£S4501
Robotics for Soft Eng

Motion Planning Il

o oged ©

Physical

World

Motion Problem

® Given

(@)

(@)
(@)
(@)

World Space W

Obstacle Regions O

Robot State R

Starting and Ending Configurations gs, qg

® Find a path that modifies R so that

O O O O

From gs to gg

While staying in W

Without hitting any obstacle O
[other constraints]

Motion Planning Problem

Obstacle

-

gs

Free path

Free
space

World

Motion Planning Families

® Reactive
o Bug
© Dynamic window
o ...
e Model-based
o Visibility

o Grid
o Probabilistic
(@)

Work under different
assumptions about sensor
types and world models
available

Model-based Approaches Produced a Graph

Path Planning: Grid Methods

Ruanissad
S

Path Planning: Visibility Methods

e

=)

e

_?.
am;
B
Y
b,
-

|

>l oo
- - i - |_#,| -
oo iere
d
R
s e el el ol o

T ma |-
~++
++ @
h N

A
[
i
o

[N
-

ﬁ

Path Planning: Probabilistic Roadmap

S

Model-based Approaches - Searching Shortest Path in Graph

® Generic
o BFS (Breath First)
o DFS (Depth First)
® Informed
o “Heuristic” to guide the search

Searching for a Path in a Graph: BFS

. . ‘ ‘ ‘ . ‘ frontier = Queue()

start .put(start)

® O o o o o o
o 6 ¢ o o o o
o 6 6 o o o o
o 6 6 6 o O o
o 6 6 o o o o

Searching for a Path in a Graph: BFS

. . ‘ ‘ ‘ . ‘ frontier = Queue()

start frontier.put(start)
came_from = {}
came_from[start] = None

@
L
o
O
o

® ®© © ¢ o
® 6 ¢ O
® © © ¢ o

Searching for a Path in a Graph: BFS

. . ‘ ‘ ‘ . ‘ frontier = Queue()

/ frontier.put(start)
came_from = {}

came_from[start] = None

@

while not .empty():
current = frontier.get()

o 0 O
o 0 O
o 0 ¢
® O O
o 0 ¢

Searching for a Path in a Graph: BFS

' 0 ‘ ‘ ‘ . ‘ frontier = Queue()

/ frontier.put(start)
came_from = {}

came_from[start] = None

@

while not .empty():
current = frontier.get()

for next in graph.neighbors(current):

@
L
o
O
o

® ®© ® ¢ o
® ®© 0 o

Searching for a Path in a Graph: BFS

' @ ‘ ‘ ‘ . ‘ frontier = Queue()

/ frontier.put(start)
came_from = {}

came_from[start] = None

@

® 6 ® ¢ O

while not .empty():
current = frontier.get()

for next in graph.neighbors(current):
if next not in came_from:

@
L
o
O
o

® ®© ® ¢ »
® 6 0 o

Searching for a Path in a Graph: BFS

' @ ‘ ‘ ‘ . ‘ frontier = Queue()

/ frontier.put(start)

C C came_from = {}

came_from[start] = None

while not .empty():
current = frontier.get()

for next in graph.neighbors(current):
if next not in came_from:

came_from[next] = current

@
L
o
O
o

® ®© ® ¢ »

[2
@
@
L

Searching for a Path in a Graph: BFS

frontier.put(start)

' i/ ‘ ‘ ‘ . ‘ frontier = Queue()

came_from = {}

came_from[start] = None

while not .empty():
current = frontier.get()

for next in graph.neighbors(current):

o © 0 o
o 0 0 o
if i f :
® o o0 0 1f next 1ot in cane_fron
came_from[next] = current
o o (o
® 0 0 o

Searching for a Path in a Graph: BFS

' i ‘ ‘ ‘ . ‘ frontier = Queue()
<:§// frontier.put(start)
_from = {}
‘ ‘ . ‘ zgm:_Figm[star‘t] = None

while not .empty():
current

for next in graph.neighbors(current):
if next not in came_from:
frontier.put(next)
came_from[next] = current

Searching for a Path in a Graph: BFS

frontier.put(start)

Q i i ‘ ‘ . ‘ frontier = Queue()

came_from = {}

came_from[start] = None

while not frontier.empty():
current = frontier.get()

for next in graph.neighbors(current):

o e @ @
® 0 0 o
if i f :
® o o 0 1f next ot in cane_fron
came_from[next] = current
o o (o
® 0 0 o

Searching for a Path in a Graph: BFS

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
current = frontier.get()

for next in graph.neighbors(current):
if next not in came_from:
frontier.put(next)
came_from[next] = current

Searching for a Path in a Graph: BFS

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
current = frontier.get()

for next in graph.neighbors(current):
if next not in came_from:
frontier.put(next)
came_from[next] = current

Searching for a Path in a Graph: BFS

Q Q Q Q Q Q ‘ frontier = Queue()

frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
current = frontier.get()

for next in graph.neighbors(current):
if next not in came_from:
frontier.put(next)
came_from[next] = current

® 6 ® ¢ O

O
©
o
O
o

® 6 © 9 o

@
@
®
©
o

@ © © ¢ o
@ © © 9 ©
© © © 9 ©

Searching for a Path in a Graph: BFS

<:> <:> <:> <:> <:> <:> <:> frontier = Queue()

frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
current = frontier.get()

for next in graph.neighbors(current):
if next not in came_from:
frontier.put(next)
came_from[next] = current

® 6 & o o

O
@
©
O
o

® © © @9 ©

@
@
®
@
©

@ ©®© © ¢ ©
@ © © 9 ©
©@ © © 9 ©

Searching for a Path in a Graph: BFS

<:> <:> <:> <:> <:> <:> <:> frontier = Queue()

frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
current = frontier.get()
if current == goal:
break
for next in graph.neighbors(current):
if next not in came_from:
frontier.put(next)
came_from[next] = current

® &6 © 9 o

O
@
®
O
o

® © © 9 o

@
@
®
@
@

© © © 9 o
@ ®© © ¢ ©
@ © © ¢ ©

Searching for a Path in a Graph: BFS

@ @ & O

@ ©®© © ¢ ©

QQOQ@
©@ © © 9 ©

@
@
®
@
@

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
current = frontier.get()
if current == goal:
break
for next in graph.neighbors(current):
if next not in came_from:
frontier.put(next)
came_from[next] = current

path = []
while current != start:
path.append(current)
current = came_from[current]
path.append(start)
path.reverse()

Searching for a Path in a Graph: BFS

@ @ & O

@ ©

@ @ @ ¢

@
O
O
@

Sy
e

@ @ @

@
Q)

@ @ @

@ 0 O
@ 0 O

® & O @

@
®
O

)
® 6 © ¢

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
current = frontier.get()
if current == goal:
break
for next in graph.neighbors(current):
if next not in came_from:
frontier.put(next)
came_from[next] = current

path = []
while current != start:
path.append(current)
current = came_from[current]
path.append(start)
path.reverse()

Searching for a Path in a Graph: Dijkstra

® 6 ¢ & o o o
o O O o o o o
® 6 ¢ o o o o
o 6 6 o6 o o o
@ 6 6 6 o (O o
o 6 6 o6 o o o

Searching for a Path in a Graph: Dijkstra

o o /‘ ® ‘\ o o e Edges with different costs
o Very slow roads (x10 worse)
. Q o Diagonal are more expensive
o Going close to obstacles more risky
O 6 6 o o o o
O 6 6 o o o o
© 06 06 06 0 (O o
O 6 6 o o o o

Searching for a Path in a Graph: Dijkstra

® © o o o o ° Edges with different costs

o Very slow roads (x10 worse)
.\ . . o Diagonal are more expensive
o Going close to obstacles more risky
® Changes frontier exploration
o O o Track costs with priority queue (return
low-cost first)

®

o O

' ‘ ‘ ' o Add a path only if it is better than best
®

®

previous path
e Slightly more expensive than BFS

Q/ O) o O(V+E) vs O(V+E*log(V))
O

Searching for a Path in a Graph: Dijkstra

frontier = PriorityQueue()

. ‘ ‘ ' . ‘ frontier.put(start, 0)

\ came_from = {}
. ‘ came_from[start] = None

while not frontier.empty():

' ' current = frontier.get()

if current == goal:
break

®

o o

‘ ‘ ‘ ‘ for next in graph.neighbors(current):
®

o

o O o
©o o0

Searching for a Path in a Graph: Dijkstra

frontier = PriorityQueue() Low cost first
‘ ‘ ' ' ‘ frontier.put(start, 0)
\ came_from = {}

cost_so_far = {}
‘ ‘ came_from[start] = None
cost_so_far[start] =0

@® @ vhilenot frontierempty():

current = frontier.get()
if current == goal:

@
o O
break
' ‘ ' ' forr:eax‘r in graph.neighbors(current):
new_cost = cost_so_far[current] + graph.cost(current,)
o o O o

O O o ¢

Searching for a Path in a Graph: Dijkstra

frontier = PriorityQueue() Low cost first
‘ ‘ ' ' ‘ frontier.put(start, 0)
\ came_from = {}

cost_so_far = {}
‘ ‘ came_from[start] = None
cost_so_far[start] =0

@® @ vhilenot frontierempty():

current = frontier.get()
if current == goal:

® 6 0 0
for next in graph.neighbors(current):
new_cost = cost_so_far[current] + graph.cost(current, next)

if next not in cost_so_far or new_cost < cost_so_far[next]:

‘/ Q ' cost_so_far[next] = new_cost
o

priority = new_cost Add to frontier only if it is
frontier.put(next, priority) better than best path to
‘ ' came_from[next] = current ..+

Searching for a Path in a Graph: Dijkstra

°

-
o
o

\

.
.

@
° o

O
o o

frontier = PriorityQueue()

‘ ‘ ' . ‘ frontier.put(start, 0)

came_from = {}
cost_so_far = {}
came_from[start] = None
cost_so_far[start] =0

while not frontier.empty():
current = frontier.get()
if current == goal:
break
for next in graph.neighbors(current):
new_cost = cost_so_far[current] + graph.cost(current, next)
if next not in cost_so_far or new_cost < cost_so_far[next]:
cost_so_far[next] = new_cost
priority = new_cost
frontier.put(next, priority)
came_from[next] = current

Searching for a Path in a Graph: Dijkstra

frontier = PriorityQueue()
‘ . . ‘ frontier.put(start, 0)
came_from = {}
cost_so_far = {}

' ‘ came_from[start] = None

cost_so_far[start]=0

. . while not frontier.empty():

current = frontier.get()
if current == goal:
break
‘ ' for next in graph.neighbors(current):
new_cost = cost_so_far[current] + graph.cost(current, next)
if next not in cost_so_far or new_cost < cost_so_far[next]:
cost_so_far[next] = new_cost
Q ' priority = new_cost
frontier.put(next, priority)
came_from[next] = current

Searching for a Path in a Graph: Dijkstra

® & O

‘®
°
O
\

° o

O
o o

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}
cost_so_far = {}
came_from[start] = None
cost_so_far[start]=0

while not frontier.empty():
current = frontier.get()
if current == goal:
break
for next in graph.neighbors(current):
new_cost = cost_so_far[current] + graph.cost(current, next)
if next not in cost_so_far or new_cost < cost_so_far[next]:
cost_so_far[next] = new_cost
priority = new_cost
frontier.put(next, priority)
came_from[next] = current

Searching for a Path in a Graph: Dijkstra

frontier = PriorityQueue()

' ‘ frontier.put(start, 0)

came_from = {}

cost_so_far[start]=0

20
@
/ cost_so_far = {}
. '. I —‘ ‘ came_from[start] = None

‘ ‘ while not frontier.empty():

current = frontier.get()
if current == goal:
break

‘ ‘ ‘ for next in graph.neighbors(current):

new_cost = cost_so_far[current] + graph.cost(current, next)
if next not in cost_so_far or new_cost < cost_so_far[next]:

® & O

cost_so_far[next] = new_cost
Q ‘ priority = new_cost

‘/ frontier.put(next, priority)
L

came_from[next] = current

0
g

Searching for a Path in a Graph: Dijkstra

frontier = PriorityQueue()

’ , ‘ ‘ frontier.put(start, 0)

came_from = {}

| cost_so_far = {}
‘ — ‘ ‘ came_from[start] = None

cost_so_far[start]=0
. while not frontier.empty():
_‘ ‘ current = frontier.get()

if current == goal:
break
‘——.‘ ‘ for next in graph.neighbors(current):
new_cost = cost_so_far[current] + graph.cost(current, next)
if hext not in cost_so_far or new_cost < cost_so_far[next]:
cost_so_far[hext] = new_cost
” ‘ priority = new_cost

frontier.put(next, priority)

came_from[next] = current

Dijkstra vs Breadth-First-Search

® 6 6 & & o ©o @ &6 6 6 0 O
® ® & o o o © &9 0 0 O
® ® & o o o @ O @ O
o ® o6 @ o o @ O ((j_i——OO
o \@ o»?. @ @ ¢ 0 6©
@ o—0—© L © 0 06 0 o o

e Both find shortest path
® Dijkstra finds shortest path while accounting for different costs
® Both waste time exploring many directions that may not be worth it

® ® O o0 00

Searching for a Path in a Graph: Heuristic Search (greedy)

- ¢ ¢ o e o 0O e Targeted expansion towards goal
O o o o ° Driven by heuristic function

o Example: distance to goal

Searching for a Path in a Graph: Heuristic Search (greedy)

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}
came_from[start] = None

while not frontier.empty():
current = frontier.get()

if current == goal:
break

for next in graph.neighbors(current):
if next not in came_from:

priority = distance(goal, next)
frontier.put(next, priority)
came_from[next] = current

Searching for a Path in a Graph: Heuristic Search (greedy)

‘ ‘ ' ‘ ‘ ' ‘ frontier = PriorityQueue()

frontier.put(start, 0)
@ 6 06 o .
came_from[start] = None

while not frontier.empty():

' ' ‘ current = frontier.get()

if current == goal:
‘ ‘ break

for next in graph.neighbors(current):

o
. . ' Q ‘ if next not in came_from
® 6 o o ¢

priority = distance(goal, next)
frontier.put(next, priority)
came_from[next] = current

Searching for a Path in a Graph: Heuristic Search (greedy)

' ' ' ‘ ‘ ' ‘ frontier = PriorityQueue()

frontier.put(start, 0)
@ 6 06 o .
came_from[start] = None
while not frontier.empty():
' ‘ current = frontier.get()

if current == goal:
‘ ‘ break

for next in graph.neighbors(current):

o
‘ ‘ ' Q ‘ if next not in came_from:
® 6 o o ¢

priority = distance(goal, next)
frontier.put(next, priority)
came_from[next] = current

e Effectiveness depends on heuristics
e There are No performance guarantees

Searching for a Path in a Graph: A*

O o o o o 0 o Best of both worlds

e Distance from home (Dijkstra)
e Distance from goal (Greedy)

o o
o O
o o
O
o o

® © © ¢ o
® ®© ® ¢ O
® © © ¢ o

Searching for a Path in a Graph: A*

‘ ‘ ' ‘ ‘ ‘ ‘ frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}
cost_so_far = {}
‘ ‘ came_from[start] = None

cost_so_far[start] = 0

while not frontier.empty():
current = frontier.get()

if current == goal:
‘ break
for next in graph.neighbors(current):
new_cost = cost_so_far[current] + graph.cost(current, next)

if next not in cost_so_far or new_cost < cost_so_far[next]:
cost_so_far[next] = new_cost

priority = new_cost + distance(goal, next)

frontier.put(next, priority)

came_from[next] = current

® ®© © ¢ o
® 6 ¢ O

Recalculation of paths

e World changes, path may not longer be optimal or be plain obsolete
e When

Every n steps (space or time)
When world change is detected
When landmarks are identified
When lost

When possible (extra time, CPU)

e \What to recalculate

o Full path
o Partial path (closest) by splicing and stitching

O O O O O

Key data structures in ROS for motion

This represents a 2-D grid map
Each cell represents the probability of occupancy.

#MetaData for the map
MapMetaData info

The map data, in row-major order, starting with (0,0). Occupancy
probabilities are in the range [0,100]. Unknown is -1.
int8[] data

Occupancy Grid

Key data structures in ROS for motion

Occupancy Grid for representing maps

This represents a 2-D grid map
Each cell represents the probability of occupancy.

#MetaData for the map
MapMetaData info

The map data, in row-major order, starting with (0,0). Occupancy
probabilities are in the range [0,100]. Unknown is -1.
int8[] data

The time at which the map was loaded
time map_load_time

The map resolution [m/cell]

float32 resolution

Map width [cells]

uint32 width

Map height [cells]

uint32 height

The origin of the map [m, m, rad].

This is the real-world pose of the cell (0,0) in the map.
geometry_msgs/Pose origin

Key data structures in ROS for motion

Occupancy Grid for representing maps

This represents a 2-D grid map
Each cell represents the probability of occupancy.

#MetaData for the map
MapMetaData info

The map data, in row-major order, starting with (0,0). Occupancy
probabilities are in the rlange [0,100]. Unknown is -1.
int8[] data

The time at which the map was loaded
time map_load_time

The map resolution [m/cell]

float32 resolution

Map width [cells]

uint32 width

Map height [cells]

uint32 height

The origin of the map [m, m, rad].

This is the real-world pose of the cell (0,0) in the map.
geometry_msgs/Pose origin

I\
A\

Key data structures in ROS for motion

Occupancy Grid for representing maps

This represents a 2-D grid map
Each cell represents the probability of occupancy.

#MetaData for the map
MapMetaData info

The map data, in row-major order, starting with (0,0). Occupancy
probabilities are in the rlange [0,100]. Unknown is -1.
int8[] data

The time at which the map was loaded
time map_load_time

The map resolution [m/cell]

float32 resolution

Map width [cells]

uint32 width

Map height [cells]

uint32 height

The origin of the map [m, m, rad].

This is the real-world pose of the cell (0,0) in the map.
geometry_msgs/Pose origin

I\
A\

Key data structures in ROS for motion

Occupancy Grid for representing maps

The time at which the map was loaded
time map_load_time
The map resolution [m/cell]

This represents a 2-D grid map
Each cell represents the probability of occupancy.

float32 resolution
Map width [cells]
> uint32 width

#MetaData for the map
MapMetaData info

The map data, in row-major order, starting with (0,0). Occupancy
probabilities are in the rpnge [0,100]. Unknown is -1.
int8[] data

Map height [cells]

uint32 height

The origin of the map [m, m, rad].

This is the real-world pose of the cell (0,0) in the map.
geometry_msgs/Pose origin

I\
A\

3D? Look at Octomaps

https://wiki.ros.org/octomap

Fig. 3 By limiting the depth
same map can be obtained at a

https://wiki.ros.org/octomap

Key data structures in ROS for motion

Occupancy Grid for representing maps

Cells containing range of probabilities between 0,100

Cells containing 0,100

a5

http://www.ikaros-project.org/articles/2008/gridmaps/

http://www.ikaros-project.org/articles/2008/gridmaps/

Key data structures in ROS for motion

Grid of cells -- same size cells, could be dispersed

#an array of cells ina 2D grid
float32 cell_width

float32 cell_height
geometry_msgs/Point[] cells

Key data structures in ROS for motion

Grid of cells -- same size cells, could be dispersed

#an array of cells ina 2D grid
float32 cell_width

float32 cell_height
geometry_msgs/Point[] cells

This contains the position of a point in free space
_ | float64 x
~| float64y
float64 z

Key data structures in ROS for motion

Path as a sequence of poses (waypoints + orientation)

#An array of poses that represents a Path for a robot to follow
geometry_msgs/Pose[] poses

A representation of pose in free space, composed of position and orientation.
Point position

Quaternion orientation

Take Away

e Families of approaches to employ in tandem
O Reactive
m Local area and fast response
o Model-based
m Big picture and long paths
m Build and searching graphs
o ROS Support

